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Several commonly available imaging techniques are able to assess human tumors with respect 

to their angiogenic status. Both CT and MRI have the advantage of good spatial resolution which is 
often equal to that of corresponding morphological images. They are minimally invasive, involve little 
patient risk and data acquisition is quick thus allowing their incorporation into routine patient studies. 
MRI techniques are also sensitive to a variety of contrast mechanisms including blood flow, 
microvessel permeability and diameter, tissue oxygenation and water diffusion. The clinical 
application of MRI techniques will be the focus of this lecture. 
 
Perfusion Imaging with Exogenous Contrast Agents 

Currently the only available contrast agents for human perfusion imaging are ‘low molecular 
weight’ agents (typically <1kDa) which diffuse freely between the intravascular and extravascular, 
extracellular space (EES) but never cross cell membranes. These contrast agents have a high first pass 
extraction in most normal (with the exception of the brain, testes and retina) and tumor tissues. Three 
major factors determine the behaviour of low molecular weight contrast media in tissues during the 
first few minutes after injection: blood perfusion, transport of contrast agent across vessel walls and 
diffusion of contrast medium in the interstitial space. If the delivery of the contrast medium to a tissue 
is insufficient (flow-limited situations or where vascular permeability is greater than inflow) then 
blood perfusion will be the dominant factor determining contrast agent kinetics; this situation is 
commonly found in tumors. If tissue perfusion is sufficient and transport out of the vasculature does 
not deplete intravascular contrast medium concentration (non-flow limited situations – e.g. in areas of 
fibrosis or after treatment) then transport across the vessel wall is the major factor that determines 
contrast medium kinetics. As low molecular weight contrast media do not cross cell membranes, their 
volume of distribution is effectively the interstitial space. It is the differences in these contrast agent 
kinetics between normal tissue and tumor that are exploited by both and dynamic MRI to provide 
lesion/tissue specific information.  

When injected as a paramagnetic bolus, gadolinium containing MRI contrast agents are 
transiently confined within the vascular space. While in that vascular space they produce magnetic 
field (Bo) inhomogenities that result in a decrease in the signal intensity of surrounding tissues. MR 
sequences can be designed to be sensitive to the vascular phase of contrast medium delivery (so-called 
T2* or susceptibility-based methods which reflect on tissue perfusion and blood volume). Similarly, 
sequences sensitive to the presence of contrast medium in the EES reflect on microvessel perfusion, 
permeability and extracellular leakage space (so-called T1 or relaxivity based methods). These 
methods are compared with f-MDCT in the table.  
Comparison of dynamic-MRI with functional-MDCT 

 Dynamic susceptibility contrast 
enhanced MRI (DSC-MRI) 

Dynamic relaxivity contrast 
enhanced MRI (DCE-MRI) 

Mechanism of tissue 
enhancement 

Susceptibility effects of contrast agent 
on magnetic field 

Relaxivity effects of contrast agent 
on tissue water 

Tissue compartment being 
interrogated 

Vascular space Vascular and extravascular space 

Tissue signal intensity change Darkening Enhancement 

Duration of effect and 
optimal data acquisition 

Seconds / every 1-2 seconds Minutes / 2-25 seconds 
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Magnitude of effect Small larger 
SNR Low Very high 
Quantification method used Central volume theorem General multi-compartment 

pharmacokinetic model 
Kinetic parameters measured 
 

Relative Blood Flow, Relative Blood 
Volume, Mean Transit Time 

Transfer constants, leakage space, 
blood volume and flow 

 

1.  Dynamic susceptibility contrast enhanced MRI (DSC-MRI) 
Perfusion-weighted images can be obtained with "bolus-tracking techniques" that monitor the 

passage of contrast material through a capillary bed (Sorensen, Tievsky et al. 1997; Barbier, Lamalle 
et al. 2001). The decrease in signal intensity of tissues can be observed with susceptibility-weighted 
T1 or T2*-weighted sequences, the latter providing greater sensitivity and contrast to perfusion effects. 
In this context, spin-echo sequences are more sensitive to capillary blood flow compared with 
gradient-echo sequences, which incorporate signals from larger vessels (Simonsen, Ostergaard et al. 
2000).  The degree of signal loss observed is dependent on the vascular concentration of the contrast 
agent and microvessel size (Dennie, Mandeville et al. 1998) and density. The signal to noise ratio 
(SNR) of such images can be improved by using high doses of contrast medium (i.e. ≥ 0.2-mmol/kg 
body weight) (Bruening, Berchtenbreiter et al. 2000).  High specification echo-planar capable MRI 
systems which allow rapid image acquisition are required to adequately characterize these effects. 
Such studies are possible on conventional MRI systems using standard gradient-echo sequences but 
are limited to fewer slices. 

Tracer kinetic principles can be used to provide estimates of relative blood volume (rBV), 
relative blood flow (rBF) and mean transit time (MTT) derived from the first-pass of contrast agent 
through the microcirculation (Rosen, Belliveau et al. 1991; Sorensen, Tievsky et al. 1997; Barbier, 
Lamalle et al. 2001). These variables are related by the central volume theorem equation (BF = 
BV/MTT). The most robust parameter that can be derived from the first pass is rBV; this is obtained 
from the integral of the time series data of the first pass (Ostergaard, Smith et al. 1998). For 
extracranial tumors, the time series data is usually fitted to a gamma variate function from which 
kinetic parameters are obtained. Absolute quantification is not currently possible for the evaluation of 
visceral tissues and tumors. From a practical perspective, it is not always necessary to quantify T2*-
weighted DSC-MRI data to obtain insights of the relative distribution of tissue perfusion. Simple 
subtraction images can be calculated to demonstrate the maximal signal drop which in turn has been 
strongly correlated with relative blood flow and volume in tumors (Cha, Lu et al. 2000; Liu, Chung et 
al. 2002).  

Quantitative DSC-MRI is currently most reliable in brain applications as the contrast medium 
is largely retained within the intravascular space (Knopp, Cha et al. 1999). There is very little data in 
the literature regarding the use of DSC-MRI outside the brain. Qualitative observations of signal loss 
observed on DSC-MRI have been reported in preliminary clinical studies to characterize liver, breast 
and brain lesions. For example, Ichikawa et al. were able to discriminate between liver metastases, 
hemangiomas and hepatomas on the basis of characteristic signal intensity changes on echo-planar 
MRI (Ichikawa, Haradome et al. 1998).  Both Kuhl et al. and Kvistad et al. have qualitatively 
evaluated the value of DSC-MRI for characterising breast lesions (Kuhl, Bieling et al. 1997; Kvistad, 
Lundgren et al. 1999). Both studies showed strong signal intensity decreases in malignant tissues with 
only minor susceptibility effects in fibroadenomas.  

 
2.  Dynamic relaxivity contrast enhanced MRI (DCE-MRI) 

Most dynamic relaxivity enhanced DCE-MRI studies employ T1W gradient-echo sequences 
to monitor the tissue enhancing effects of contrast media. This is because gradient-echo sequences 
have good contrast medium sensitivity, high signal to noise ratio and the data acquisition can be 
performed rapidly. Unlike f-MDCT, the degree of signal enhancement seen on T1-weightedMRI is 
dependent on a number of physiological and physical factors. These include tissue perfusion, capillary 
permeability to contrast agent, extracellular leakage space volume, native T1-relaxation rates of the 
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tissue, contrast agent dose (and its protein binding), imaging sequence used, imaging parameters 
utilised and on machine scaling factors. 
 Signal enhancement seen on a dynamic acquisition of T1-weighted images can be assessed 
either by analysing signal intensity changes (semi-quantitative) and/or by quantifying contrast agent 
concentration changes using pharmacokinetic modelling techniques (Figure 3).  Semi-quantitative 
parameters have the advantage of being relatively straightforward to calculate but have a number of 
limitations including an inability to accurately reflect contrast medium concentration in the tissue of 
interest. They can also be influenced by scanner settings. Quantitative methods use pharmacokinetic 
modelling techniques that are applied to tissue contrast agent concentration changes. Signal intensity 
changes during dynamic acquisition are used to estimate contrast agent concentration in vivo (Parker, 
Suckling et al. 1997; Parker, Baustert et al. 2000). Quantitative parameters are more complicated to 
derive which deters their use at the workbench. The main advantage of quantification is the ability to 
directly compare examinations acquired serially in a given patient and in different patients imaged at 
the same or different scanning sites. 

Many studies have attempted to correlated tissue MR enhancement with immuno-
histochemical microvessel density (MVD) measurements. Some MRI studies have shown broad 
correlations between T1 kinetic parameters estimates and MVD whereas others have not. Recently, 
VEGF which as noted above is a potent vascular permeability and angiogenic factor has been 
implicated as an additional explanatory factor that determines MR signal enhancement although the 
relationship between MRI enhancement and tissue VEGF expression is not straightforward. Other 
characteristics that have been correlated with enhancement patterns include the degree of stromal 
cellularity and fibrosis and tissue oxygenation (see Padhani and Dzik-Jurasz (Padhani and Dzik-Jurasz 
2004) for a comprehensive review). 
 Enhancement seen on T1-weighted DCE-MRI is a valuable tool in a number of clinical 
situations. The most established role is in lesion characterization where it has found a role in 
distinguishing benign from malignant breast and musculoskeletal lesions (Kaiser and Zeitler 1989; 
van der Woude, Verstraete et al. 1998). Dynamic T1-weighted MRI studies have also been found to be 
of value in staging gynaecological malignancies, bladder and prostate cancers (Huch Boni, Boner et 
al. 1995; Barentsz, Jager et al. 1996; Jager, Ruijter et al. 1997; Liu, Krestin et al. 1998). DCE-MRI 
studies have also been found to be of value in detecting tumor relapse in the presence of fibrosis 
within treated tissues of the breast and pelvis (Dao, Rahmouni et al. 1993; Gilles, Guinebretiere et al. 
1993; Heywang-Kobrunner, Schlegel et al. 1993; Kerslake, Fox et al. 1994; Mussurakis, Buckley et 
al. 1995; Kinkel, Tardivon et al. 1996; Blomqvist, Fransson et al. 1998; Hawnaur, Zhu et al. 1998). 
Recently, DCE-MRI has been shown to be of value for screening women at high genetic risk of breast 
cancer (Leach, Boggis et al. 2005). DCE-MRI is also able to predict response or monitor the effects of 
a variety of treatments. These include neoadjuvant chemotherapy in bladder and breast cancers and 
bone sarcomas (Knopp, Brix et al. 1994; van der Woude, Bloem et al. 1995; Barentsz, Berger-Hartog 
et al. 1998; Reddick, Taylor et al. 1999; Padhani, MacVicar et al. 2001). Other treatments that can be 
monitored include radiotherapy in rectal and cervix cancers (de Vries, Griebel et al. 2000; Mayr, Yuh 
et al. 2000; Devries, Griebel et al. 2001; George, Dzik-Jurasz et al. 2001) and androgen deprivation in 
prostate cancer (Padhani, MacVicar et al. 2001). A number of studies have recently reported on the 
use of T1-weighted DCE-MRI for monitoring the effects of antiangiogenic/antivascular treatments 
(Galbraith, Maxwell et al. 2003; Morgan, Thomas et al. 2003). These response assessment studies 
show that successful treatment results in a decrease in the rate and magnitude of enhancement and that 
poor response results in persistent abnormal enhancement. 

3.  MRI with macromolecular weight contrast media (MMCM) 
ECF contrast agents have a high first pass extraction fraction in both normal and abnormal 

tissues (Daldrup, Shames et al. 1998). MMCM have molecular sizes that approximate some serum 
proteins and have minimal first pass extraction fraction in normal vessels and therefore appear well 
suited for the measurement of tumor macromolecular hyperpermeability (Daldrup, Shames et al. 
1998; Roberts, Roberts et al. 1998; Su, Muhler et al. 1998). MMCM are probably delivered to the 
interstitial space by non-specific vesicular transport (vesiculo-vacuolar organelles) or through 
transendothelial channels (Dvorak, MacGlashan et al. 1996). Only preclinical validation of MMCM 
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techniques appears in the literature but approval of agents for human use is expected soon. Albumin-
(Gd-DTPA)30 is the prototype MMCM (70-90 kDa) but this agent has been found to be immunogenic 
and has significant retention in the liver and bone (Schmiedl, Ogan et al. 1987). Polylysine-(Gd-
DTPA) is not readily biodegradable which also makes it unsuitable for human use. Other Gadolinium 
based MMCM (e.g., Gadomer 17 and the macromolecular Gd-DOTA derivate P792) are currently in 
advanced clinical trials and licensing for human use for these agents is expected soon. Ultrasmall 
superparamagnetic iron oxide (USPIO) particles (diameter 20-30 nm) have been investigated as 
MMCM for the evaluation of angiogenesis (Turetschek, Huber et al. 2001; Turetschek, Roberts et al. 
2001). 

 
Imaging vascular function using haemoglobin as a contrast agent (Intrinsic Susceptibility MRI) 

Analysis of vascular function can be accomplished by using deoxyhaemoglobin as an 
intrinsic, paramagnetic contrast agent (blood oxygenation level dependent or BOLD contrast; also 
called Intrinsic Susceptibility Contrast) (Howe, Robinson et al. 2001). Gradient-echo T2* weighted 
images are used are used; the signal intensity seen on BOLD images is dependent on tissue structure, 
local blood flow and on the oxygenation status of hemoglobin. The relaxivity of tissues (R2*=1/T2*) 
can be quantified relativity easily using multi-gradient echo sequences with lengthening echo-times. 
Changes in BOLD signal in response to an exogenous stimulus is due to alteration in blood volume, 
blood flow and blood oxygenation. BOLD contrast can therefore be used for mapping changes in 
blood volume fraction, and vascular functionality associated with angiogenesis and anti-angiogenesis 
(Abramovitch, Dafni et al. 1999; Neeman, Dafni et al. 2001). Vascular function can be evaluated by 
analysis of BOLD contrast changes in response to hyperoxia and hypercapnia (Howe, Robinson et al. 
2001). Clinical application of this technique has revealed high signal enhancements in response to 
carbogen (5% C02: 95%02) inhalation in human tumors (Taylor, Baddeley et al. 2001). Taylor et al 
have also reported that human studies are technical challenging (Taylor, Baddeley et al. 2001). The 
primary advantage of BOLD techniques is that there is no need to administer contrast material. 
Measurements can be repeated as needed with almost no limitation. BOLD contrast is not sensitive to 
fluctuation in permeability. A major reservation for intrinsic contrast imaging is the low contrast to 
noise ratio in the images obtained. 

 
Imaging vascular function using water diffusion (Diffusion Weighted MRI; DW-MRI) 

In basic terms DW-MRI looks at the random (Brownian) motion of water molecules and the 
factors that restrict or increase water mobility. In human tissues it is possible to assess the different 
contributions to the mobility of water molecules by applying to T2–weighted sequences additional 
diffusion-weighting. This entails the application of two extra opposing (or balanced) gradient of 
differing durations and amplitudes. For water molecules that show no net movement over time, the 
application balanced gradients results in no change in signal intensity in diffusion weighted images. 
Conversely, applying balanced gradients to water molecules with net movement will no longer cancel 
out, thus affecting the measured signal intensity. The degree of diffusion-weighting is termed the b-
value (measured in sec mm2), which depends on the magnitude of the gradient, duration of the 
gradient and time between the two gradient pulses (Schaefer PW, Grant PE et al. 2000). The apparent 
diffusion coefficient (ADC; the observed displacement of water molecules per unit time in mm2/sec) 
of water in tissues is dependent on its microenvironment. Thus, DWI is not just sensitive to 
microscopic movements of water but will also be sensitive to other physiological motions of greater 
magnitude, such as blood and CSF flow which therefore make a significant contribution to the 
measured the measured ADC (Le Bihan D, Breton E et al. 1988; Turner R, Le Bihan D et al. 1990; 
Turner R, Le Bihan D et al. 1991). At lower b values (<100 sec/mm2) tumor perfusion rather than 
extracellular water diffusion will be the predominant factor in determining the ADC of water (Le 
Bihan D, Breton E et al. 1988; Morvan D 1995; Thoeny HC, De Keyzer F et al. 2004). With increased 
diffusion-weighting (i.e. higher b-values) there will be increased filtering out of high mobility 
molecules and one so will be able to differentiate between high and low mobility water populations 
(Niendorf T, Dijkhuizen RM et al. 1996). Higher b-values result in filtering out perfusion changes and 
so the calculated ADC can become a true measure of the diffusion coefficient D. At high b-values, it 
is not entirely clear whether the measurement of the differing mobility populations truly represents the 
intracellular or extracellular components of the total water diffusion measured, which may not be 
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great significance (Mulkern RV, Vajapeyam S et al. 2005). Thus, the magnitude of the b-value used in 
DWI is an important consideration when assessing pathological or pharmacological processes that 
alter blood flow, especially when one may want to have a particular interest in diffusion changes 
rather than the vascular effects. 
 There has been a huge increase in the number of diffusion MRI publications within the past 
five years mostly in neurology. With regards to oncology, research has focused mainly on the 
diagnostic value of DWI (at high b-value) in assessing the presence and extent of tumors within 
organs (eg, prostate and breast) and in predicting and assessing early response to treatment. For 
example serial ADCs can be measured before and after the introduction of anti-neoplastic treatment, 
which then could be used as a pharmacodynamic indicator of drug activity when correlated with 
histological changes. The use of perfusion weighted DW-MRI using low b-values is relativity under 
explored in humans but the potential has been demonstrated. For example, Thoeny et al recently used 
DWI to evaluate the antivascular effects of the compound CA4P; which is currently undergoing 
clinical trials. They showed rapid antivascular effects in xenografts at 1 and 6 hours post CA4P when 
falls in ADC values were observed which histologically corresponded to vessel congestion and 
vascular shutdown, but no necrosis (Thoeny HC, De Keyzer F et al. 2005). A more recently published 
study by Thoeny assessed tumor response to multiple administrations of CA4P with similar results 
seen after each treatment (Thoeny HC, De Keyzer F et al. 2005). The results demonstrate the 
capability of DWI to distinguish not only changes in vascularity but also between viable and 
nonviable tissue due to changes in tumor cellularity (Lang P, Wendland MF et al. 1998; Lyng H, 
Haraldseth O et al. 2000). 
 
Conclusions 
 There is a definite clinical need for non-invasive tumor angiogenesis imaging assays. 
Ultrasound with microbubbles as contrast agents, perfusion CT, DSC-MRI and DCE-MRI are 
currently the favored techniques for evaluating tumors with respect to their functional 
microcirculation but encouraging data with other MRI techniques is beginning to appear. The choice 
between techniques used in the clinic will be determined by several key factors including local 
availability and expertise, tumor site, desired perfusion parameter and the need to reduce radiation 
burden. The widespread availability of CT may be a major determinant in future use. To date there 
have been no comprehensive studies that have compared the performance of functional CT and 
dynamic MRI. A number of challenges must be met if quantitative imaging of angiogenesis is to enter 
wider clinical practice. These include the need for commercial equipment manufacturers to provide 
robust methods for rapidly measuring time-varying changes in tissue contrast agent concentration and 
robust analysis software with validated statistical tools for the evaluation of heterogeneity. Such 
developments will be essential for multicenter trials where it will be necessary to establish effective 
cross-site standardization of measurements and evaluation. As imaging scientists and clinicians, the 
radiological community will need to become enthusiastic key players if there is to be successful 
clinical implementation of angiogenesis imaging. 
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